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Abstract :
We propose a standardized framework for measuring the Sweller Load metric — a dynamic, individualized indicator of optimal cognitive

load for accelerated learning. This paper introduces a multi-layered approach, ranging from conversational interaction analysis to cog-

nitive fingerprinting, with the goal of developing a precise, adaptive system for optimizing human learning. Crucially, we conceptualize

Sweller Load not as a simple scalar but as a multidimensional cognitive tensor that captures real-time cognitive, behavioral, and emo-

tional states. We outline measurement methods, architectural components, and open challenges, and we invite the scientific community

to collaborate on refining, validating, and extending this framework toward the next generation of adaptive learning systems.

1 Introduction

Cognitive Load Theory (CLT) has long identified the narrow band-

width of human working memory as the core bottleneck of learn-

ing. The Sweller Load framework extends this insight, proposing

a dynamic system that optimises learning delivery in real time by

adapting to the learner’s evolving cognitive capacity.

To realize this vision, we must develop reliable, scalable meth-

ods for quantifying and tracking Sweller Load as it fluctuates

within and across learning sessions. This paper proposes such a

measurement framework — moving beyond static assessments to

real-time cognitive fingerprinting and introducing Sweller Load

as a high-dimensional tensor. This approach will enable AI-driven

teaching systems to deliver precisely calibrated instruction at the

edge of each learner’s cognitive capacity.

2 Background and Related Work

2.1 Mental-Workload Assessment

Early human-factors studies introduced subjective scales such as

NASA-TLXHart et al., 1988 (Mental, Physical, Temporal Demands,

Performance, Effort, Frustration) to capture perceived workload

after a task segment. Variants—including SWAT, SMEQ, and the

later Subjective Mental-Workload (SMWL) index—remain inex-

pensive and sensitive, but they are retrospective, interrupt flow,

and collapse multidimensional strain into a single post-hoc score.

Objective approaches substitute dual-task interference or per-

formance degradation during primary tasks, while physiologi-

cal studies exploit pupillometry, HRV, EEG theta/alpha ratios,

and functional near-infrared spectroscopy. These signals deliver

higher temporal resolution than questionnaires but typically re-

quire specialised hardware, intrusive calibration, and still report

one scalar “workload” channel rather than a structured profile.

A recent survey by Longo, Wickens & Hancock (2022)

concludes that no current paradigm integrates subjective, be-

havioural, and physiological indicators into a unified, real-time

model of mental workload. Sweller Load addresses this gap by

encoding multiple concurrent load dimensions inside a live tensor

that is both machine-readable and instruction-ready.

2.2 Adaptive-Learning Personalisation

Mainstream adaptive-learning engines—e.g. ALEKS, DreamBox,

Knewton, Duolingo—modify sequencing based on item correct-

ness Beck, 2018 and predicted mastery. They rarely look deeper

than error counts and latency, leaving intrinsic, extraneous, and

germane loads unmeasured. Research sub-fields such as model-

tracing tutors and Bayesian knowledge-tracing have introduced

finer-grained mastery estimates, yet still treat cognitive capac-

ity as static and uniform across sessions. Our tensor formal-

ism extends these systems by (a) modelling capacity fluctuations

minute-by-minute and (b) surfacing which component of load is

near threshold, enabling much richer instructional moves (pacing,

modality swap, creativity injection, recovery micro-breaks).

2.3 Multimodal Affective Pipelines

Multimodal affective-computing work (e.g. real-time engage-

ment detection from webcam, microphone, keystroke dynamics)

demonstrates that conversational and behavioural cues can track

emotions such as boredom, confusion, or frustration. Yet these

pipelines usually feed dashboards for instructors, not autonomous

content-shaping algorithms. Sweller Load appropriates several of

the same low-friction signals (response latency, topic drift, linguis-

tic complexity) but binds them to explicit cognitive-load channels

and couples them directly to an AI teacher’s control policy.

2.4 Positioning Sweller Load

Compared with prior workload scales, Sweller Load converts het-

erogeneous signals into a high-resolution cognitive fingerprint

with both static traits and dynamic tensor channels. Relative to

adaptive-learning platforms, it treats cognitive bandwidth—not

mastery—as the primary optimisation target. And unlike affective-

computing dashboards, it closes the loop: live tensors drive imme-

diate pedagogical interventions.

In short, existing methods either lack temporal granularity, di-

mensional richness, or actionable integration; Sweller Load’s ten-

sor model is designed to supply all three simultaneously, forming

the missing substrate for truly load-aware, privacy-respecting AI

instruction.
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3 Aim and Purpose
The primary aims of this study are to:

• Define what dimensions of cognitive load should be mea-

sured;

• Specify how Sweller Load can be quantified and operational-

ized in real time;

• Establish a framework that allows AI systems to dynamically

adapt learning delivery at both local (moment-to-moment)

and global (longitudinal) scales.

We argue that Sweller Load should be represented as a multidi-

mensional tensor:

L(𝑡) = [𝜆1 (𝑡), 𝜆2 (𝑡), . . . , 𝜆𝑛 (𝑡)]

where each 𝜆𝑖 (𝑡) represents a specific cognitive, behavioral, or
emotional load channel at time 𝑡 . This tensor serves as a real-time

cognitive fingerprint, enabling AI to optimise content complexity,

pacing, modality, and intervention strategies with unprecedented

precision.

4 Measurement Framework
We propose a three-layer measurement system, progressing from

minimally invasive interaction data to full cognitive-behavioral

profiling.

4.1 Layer 1: Conversational and Behavioral Interactions

• Signals:

– Response latency;

– Topic coherence and maintenance;

– Error patterns (misstatements, corrections);

– Voluntary requests (clarification, summarization);

– Sentence complexity and syntactic variation.

• Tensor components:

– 𝜆1 = Linguistic complexity load,

– 𝜆2 = Behavioral engagement load.

• Measurement tools:

– Natural language processing (NLP) analysis;

– Interaction logging (clickstream, scrolling, re-reading

frequency).

4.2 Layer 2: Cognitive-Behavioral Fingerprinting

• Signals:

– Working memory span (n-back, digit span);

– Cognitive flexibility (task-switching, rule shifting);

– Processing speed (reaction time);

– Error tolerance under challenge.

• Tensor components:

– 𝜆3 = Working memory load,

– 𝜆4 = Cognitive flexibility load,

– 𝜆5 = Processing speed load.

• Measurement tools:

– Embedded micro-assessments;

– Gamified calibration tasks.

4.3 Layer 3: Advanced Cognitive and Emotional Profiling

• Signals:

– Emotional stability (performance volatility);

– Fatigue markers (slowing responses, error escalation);

– Self-reported affect (fatigue, stress, motivation);

– Optional biometric data (heart rate variability, pupil di-

lation).

• Tensor components:

– 𝜆6 = Emotional resilience load,

– 𝜆7 = Fatigue load.

• Measurement tools:

– Periodic check-ins;

– Optional wearable integration.

5 Tensor Architecture and Interpretation
The Sweller Load tensor is:

L(𝑡) = [𝜆1 (𝑡), 𝜆2 (𝑡), . . . , 𝜆𝑛 (𝑡)]
where each 𝜆𝑖 (𝑡) reflects a distinct load dimension.

The composite norm is:

∥L(𝑡)∥ =

√√
𝑛∑︁
𝑖=1

𝜆𝑖 (𝑡)2,

used to maintain the learner near their optimal cognitive zone,

while the system modulates specific 𝜆𝑖 to address localized over-

loads.

6 Signal Processing and Tensor Construction
To operationalize Sweller Load as a real-time tensor, we define

a signal-fusion pipeline that ingests raw learner interactions and

transforms them into a structured set of cognitive load compo-

nents. Each tensor dimension 𝜆𝑖 (𝑡) is derived from one or more

behavioural, linguistic, or psychometric signals observed within a

recent temporal window.

6.1 Signal-to-Tensor Mapping

Table 1
Representative mapping of observable signals to Sweller Load tensor di-

mensions.

Tensor Dimension Primary Signals Transformation Method

𝜆1 Linguistic complexity Syntax depth, vocab diversity NLP scoring, z-normalisation

𝜆2 Engagement load Time-on-task, interaction bursts Moving average, burst detection

𝜆3 Working memory load n-back accuracy EWMA correct/incorrect ratio

𝜆4 Flexibility load Task-switch latency, recovery Normalised switch cost

𝜆5 Processing speed load Reaction time, prompt response Rolling median deviation

𝜆6 Emotional strain Self-report, sentiment drift Likert scaling, polarity tracking

𝜆7 Fatigue load Pauses, error bursts Fatigue index from delta 𝜆𝑖

6.2 Preprocessing and Normalisation

Each raw signal is:

• Time-windowed (e.g., 30–120s trailing buffer);

• Normalised relative to baseline or rolling mean;

• Smoothed via exponential weighted moving average

(EWMA).
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6.3 Tensor Update Pseudocode

Algorithm 1 Tensor Update Rule

for each timestep 𝑡 do
for each dimension 𝜆𝑖 do
Retrieve relevant signal vector 𝑆𝑖 (𝑡)
Normalize: 𝑁𝑖 (𝑡) = (𝑆𝑖 (𝑡) − 𝜇𝑖 )/𝜎𝑖
Smooth: 𝜆𝑖 (𝑡) = 𝛼𝑁𝑖 (𝑡) + (1 − 𝛼)𝜆𝑖 (𝑡 − 1)

end for
end for

6.4 Composite Norm and Thresholding
The global norm is:

∥L(𝑡)∥ =

√√
𝑛∑︁
𝑖=1

𝜆𝑖 (𝑡)2

which governs macro-level pacing, while local thresholds per

𝜆𝑖 inform targeted interventions.

7 Calibration and Validation Protocol
To establish meaningful baselines and validate the Sweller Load

tensor, we propose a two-stage calibration process:

• Onboarding calibration: Initial tasks (15–20 minutes)

measuring working memory span, flexibility, and processing

speed, alongside self-reported stress and fatigue.

• Ground-truth validation: Periodic subjective ratings (e.g.,
NASA-TLX or 7-point mental effort scales) collected during

use to correlate against tensor estimates.

Statistical evaluation includes:

• Correlation analysis between composite norm ∥L(𝑡)∥ and

subjective workload.

• Cross-session stability testing of static components.

• Predictive validity: Can the tensor trajectory forecast perfor-

mance declines or learner disengagement?

8 Adaptive Learning Integration
AI systems leveraging Sweller Load will:

• Monitor 𝐿(𝑡) in real time;

• Adjust content complexity, chunking, modality, and pacing;

• Deploy creative and recovery tasks when necessary;

• Provide transparent explanations to maintain user trust

(“We’re simplifying this section due to elevated load.”).

9 Psychological and Cognitive Fingerprinting
The Sweller Load system creates a cognitive fingerprint composed

of:

• Static components (𝑆) −→ stable traits:

– Baseline working memory;

– Processing speed profile;

– Cognitive flexibility;

– Learning modality preferences;

– Neurodivergence indicators (if disclosed or observed).

• Dynamic components (𝐷 (𝑡)) −→ moment-to-moment

states:

– All 𝜆𝑖 (𝑡) tensor channels.
Storage architecture:

• Local, encrypted storage (e.g., Trusted Execution Environ-

ments);

• Layered snapshots for longitudinal tracking;

• Delta-based updates to static profile, continuous updates to

dynamic tensor.

This fingerprint enables:

• Personalized calibration;

• Real-time modulation;

• Cross-context learning transfer.

As emphasized in prior work, user data sovereignty, consent-

based participation, and federated learning techniques are core

ethical commitments.

10 Open Dataset and Tooling Roadmap
To support community validation, we plan to release:

• A benchmark multimodal dataset with text, timing, interac-

tion, and optional biometric streams.

• An open-source Python toolkit including:

– Signal extractors;

– Tensor constructor;

– Real-time visualizer;

– Simulated learner data generator.

Data sharing will comply with strict consent, anonymization,

and ethical guidelines.

11 Community Call to Action
We invite collaborative research on:

• Validation studies across demographics;

• Exploration of alternative modeling approaches (e.g., nonlin-

ear embeddings, graph models);

• Development of shared multimodal benchmark datasets;

• Creation of ethical governance frameworks;

• Open-source tooling for signal extraction, tensor modeling,

and adaptive control.

12 Limitations and Future Work
While the Sweller Load framework offers a promising foundation

for adaptive cognitive load management, several limitations and

open challenges remain:

• Signal noise and missing data: Real-world learning envi-

ronments often exhibit noisy, incomplete, or device-specific

signal streams. Future work will develop robust imputation

and denoising techniques to ensure tensor stability under

suboptimal conditions.

• Cross-population generalizability: The proposed model

requires validation across diverse learner populations, in-

cluding neurotypical and neurodivergent groups, varying

age ranges, and cultural backgrounds to ensure fairness and

effectiveness.

3



Sweller Load Measurement Guidelines

• Scaling and computational efficiency: Running real-time

tensor updates and adaptations across large-scale deploy-

ments presents technical challenges. Future research will ex-

plore lightweight, edge-optimised implementations.

• Algorithmic fairness and bias mitigation: There is a risk
that adaptive systems may amplify existing disparities if cal-

ibration favors majority groups. Ongoing work will focus on

identifying and mitigating potential biases in signal process-

ing and adaptive interventions.

By addressing these challenges, the Sweller Load framework

can mature into a scalable, inclusive, and scientifically grounded

foundation for next-generation adaptive learning systems.

13 Conclusion
By representing Sweller Load as a multidimensional cognitive ten-

sor, we lay the foundation for real-time, adaptive learning systems

capable of optimizing instruction to the edge of each learner’s ca-

pacity. We call on the scientific community to join us in refining,

validating, and expanding this framework — ushering in a new era

of personalized, ethical, and transformative education.

Glossary of Notation
• L(𝑡) — Load tensor at time 𝑡

• 𝜆𝑖 (𝑡) — Load component 𝑖 at time 𝑡

• 𝜇𝑖 , 𝜎𝑖 —Baselinemean and standard deviation for component

𝑖

• 𝛼 — Smoothing factor in EWMA
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Konečnỳ, Jakub, H. BrendanMcMahan, Daniel Ramage, et al. (2016). “Federated learn-

ing: Collaborative machine learning without centralized training data”. In: arXiv
preprint arXiv:1602.05629.

Longo, Matthew, Christopher D. Wickens, and Peter A. Hancock (2022). “The state

of the art in mental-workload assessment: A 2022 meta-review”. In: Human Factors.
Early access. doi: 10.1177/00187208221099452.

Mayer, Richard E (2005). “Cognitive theory of multimedia learning”. In: The Cam-
bridge Handbook of Multimedia Learning. Ed. by Richard E Mayer. Cambridge Uni-

versity Press, pp. 31–48.

Paas, Fred, Alexander Renkl, and John Sweller (2003). “Cognitive load theory and

instructional design: Recent developments”. In: Educational Psychologist 38.1, pp. 1–
4. doi: 10.1207/S15326985EP3801_1.

Shneiderman, Ben (2007). “Creativity support tools: Accelerating discovery and in-

novation”. In: Communications of the ACM 50.12, pp. 20–32. doi: 10.1145/1323688.
1323689.

Sweller, John (2005). Cognitive Load Theory. Springer.

4

https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1177/00187208221099452
https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689

	Introduction
	Background and Related Work
	Mental-Workload Assessment
	Adaptive-Learning Personalisation
	Multimodal Affective Pipelines
	Positioning Sweller Load

	Aim and Purpose
	Measurement Framework
	Layer 1: Conversational and Behavioral Interactions
	Layer 2: Cognitive-Behavioral Fingerprinting
	Layer 3: Advanced Cognitive and Emotional Profiling

	Tensor Architecture and Interpretation
	Signal Processing and Tensor Construction
	Signal-to-Tensor Mapping
	Preprocessing and Normalisation
	Tensor Update Pseudocode
	Composite Norm and Thresholding

	Calibration and Validation Protocol
	Adaptive Learning Integration
	Psychological and Cognitive Fingerprinting
	Open Dataset and Tooling Roadmap
	Community Call to Action
	Limitations and Future Work
	Conclusion

